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Abstract

A few recent observations of interplanetary fields and
plasmas are discussed, including the evolution over several
years of the longitudinal sector pattern, the corotating
filamentary structure that exists within the sectors, guiding
of solar cosmic rays along such magnetic filaments, a field-
aligned thermal anisotropy of the plasma, and a small component
of corotating plasma velocity observed at 1.A.U. The solar wind
plasma streaming past spacecraft near 1 A.U. contains a large

amoutt of information about the detailed structure of the sun.

Introduction

The use of satellites and space probes in the last few
years to make in situ observations of interplanetary magnetic
fields and plasmas has produced significant new information
about the extended solar corona. Hydrodynamic expansion of the
corona with a concomitant extension of the solar magnetic field
was discussed theoretically by E.N.Parker (1963), and verified
in 1962 by the Mariner 2 spacecraft on its flight to Venus.

The velocity of the expanding solar plasma (solar wind) is
approximately radial with a magnitude near 1 A.U. of 350-400
km/sec in quiet times, increasing to 600-700 km/sec in disturbed
intervals. The flux is about 10g ions/cmzlsec with the prin-

cipal positive ionic component being protons with an energy of

XThis paper was prepared while the author was a guest at the
Division of Plasma Physics, The Royal Institute of Technology,
Stockholm, Sweden.




about 1 kev. A varying admixture of alpha particles is present
with the average concentration about 5%.

The combination of radial plasma velocity and solar rotation
stretches the interplanetary magnetic field into an Archimedes
spiral making an angle near the earth of about 45° with the
earth-sun direction. The field near the earth is approximately
parallel to the ecliptic, and its average magnitude is about
by (E.%"lO_5 gauss), with a range from 2y to about 40y, the larper

values usually occurring during flare-associated disturbances.

Evolution of Sector Structure

This review of new observations will begin with a large-
scale property of the interplanetary medium, and then proceed
to smaller-scale structures. In accord with the purpose of
this symposium only a few recent observations are discussed;

a complete survey is not attempted (for a recent review see
Ness, 1967). An unexpected property of the interplanetary
magnetic field is shown in Figure 1, which gives the predominant
polarity (toward or away from the sun) of the field observed
by IMP-1 during the winter of 1963-4, For several consecutive
days the field polarity remains unidirectional. The sector
pattern thus defined corotates with the sun, i.e. the pattern
tends to repeat itself every 27 days. Considerable evidence
(Wilcox and Ness, 1965) suggests that each sector so defined
was a coherent entity, with plasma velocity and field magnitude
reaching maxima in the preceding portion and declining in the
following portion. Observations from Mariner 2 had previously
shown a pattern of recurring maxima in the solar wind velocity
(see Figure 2); the field at that time was divided into two
sectors per solar rotation. It should be emphasized that it is
the pattern of field and plasma structures that tends to coro-
tate with the sunj the actual motion of the plasma is approxi-
mately in the radial direction.

The evolution of the interplanetary sector pattern during
several years is shown in Figure 3. The Mariner 2 and IMP-1
patterns previously mentioned can be seen, as well as observa-
tions by several later spacecraft. Near the end of 1964 IMP-2
observed almost the same pattern as that of IMP-1, and the




ed in Figure 3 is based on this fact, plus
the observed sequences of recurring geomagnetic activity. It is
interesting that independent cosmic ray observations by the
Vela satellites (Asbridge et al.,1967) in the middle of 1964
also led to the conclusion that the IMP-1 sector pattern was
essentially unchanged at that time.

The sector pattern shown in Figure 3 appears to be dominated
by the old sunspot cycle up to the end of 1964 and the beginning
of 1965, and by the new cycle thereafter. Characteristics of
the old cycle pattern include a quasi-stationary structure for
at least one year, and a recurrence interval of 27 days. Com-
parison of this pattern with the direction of photospheric
magnetic fields has suggested that the average heliographic
latitude of the interplanetary field observed near the earth
was about 15° N (Wilcox and Ness, 1967). This is presumably
related to the overall predominance of northern hemispheric
solar activity at this time. Characteristics of the new cycle
sector pattern include a more rapid evolution with time, and
a recurrence interval of about 28 days. This probably indicates
a source at a heliographic latitude even higher than discussed
above, which might be related to the appearance of new cycle
activity at higher heliographic latitudes. Although the evolu-
tion with time is more rapid it is interesting that so far at
least during the increase of solar activity the sector property
has persisted, i.e. for several consecutive days the field pola-
rity is unidirectional,

The significance of the observed interplanetary sector
structure as a possible indicator of a fundamental large scale
solar organization cannot yet be evaluated. It seems possible
that although individual photospheric field elements at various
latitudes respond to the differential rotation as would be
expected (and as they have been observed to do by Wilcox and
Ness, 1966) an underlying pattern of the appearance of photo-
spheric magnetic regions exists for at least several years and
is related to the interplanetary pattern shown in Figure 3.

A related possibility has been suggested by Dodson-Prince and

Hedeman (1967) from a study of centers of activity; they also
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endency for active regions to develop on
opposite sides of the sun approximately 180° away may be signi-

ficant.

Solar Cosmic Rays

Several spacecraft observations of energetic particles
have been interpreted in relation to the interplanetary magnetic
fields. Observations shown in Figure 4 by J.A.Simpson and
colleagues on IMP-1 showed that a recurring stream of protons
of about 1 Mev energy were contained within one of the sectors
shown in Figure 1. The proton intensity followed the usual
sector structure of a maximum in the preceding portion of the
sector and a decline in the following portion. Understanding
the physical processes which have populated this one sector
with an appreciable intensity of recurring energetic protons
is surely one of the most challenging problems for solar physics.
Our knowledge of the so-called solar cosmic rays has been
considerably increased by the elegant experiments of McCracken
and colleagues on Pioneers 6 and 7 in 1966. Directional pro-
perties of the cosmic radiation have been investigated utilizing
a detector that rotates with the spinning spacecraft, whose
axis is perpendicular to the ecliptic. The detector responds
primarily to particles whose motion is approximately parallel
to the ecliptic. The first particles to reach the spacecraft
from a solar flare are often very much guided along the inter-
planetary field lines, so that the observed distribution is
quite anisotropic, as shown in Figure 5, which shows the inten-
sity of cosmic rays in the energy interval 7.5-45 Mev observed
after three flares. If the flare position is near the middle
of the western hemisphere of the visible disk the particles
tend to have a rapid sun-earth transit. If the flare is in the
eastern hemisphere the particles tend to arrive after a con-
siderably longer delay. McCracken et al. (1967) interpret this
as being caused by longitudinal diffusion of the flare particles
close to the sun, until they reach the magnetic lines that

connect to the spacecraft and propagate rapidly along them. The



mean free path for scattering in the extended interplanetary
medium is estimated at 1 A.U., by McCradken et al. (1967), and
they suggest that earlier discussions of diffusion in this
medium may need to be reexamined.

The guiding of solar cosmic rays by the interplanetary
magnetic field has been demonstrated by McCracken and Ness
(1966), as shown in Figure 6, which compares Pioneer 6 obser-
vations of the field direction with the direction of cosmic
ray anisotropy. The field direction observed during four hours
is shown as the continuous line, while the superposed arrows
indicate the direction of cosmic ray anisotropy (the direction
from which the maximum flux is incident on the detector). The
guiding of the cosmic rays around several sharp bends in the
field is obvious. It is often observed that when the field
direction has an abrupt change, the cosmic ray flux may abruptly
increase or decrease, This leads to the concept of discrete
filaments of magnetic flux that extend from regions very close
to the sun out to 1 A.U. (and beyond). Simultaneous observations
from two spacecraft at different longitudes by Ness (1966) have
shown that these filaments corotate with the sun in the same
way as do the sectors previously discussed. The cross section
of these filaments is typically in the range of 0.6—5><106 km.
Thus at least at times there may be a detailed mapping of small-
scale features close to the sun onto a sphere of radius 1 A.U.
The study of the sun through observations of interplanetary
fields and plasmas by spacecraft at 1 A.U. can perhaps be com-
pared with a field-emission microscope, in which the structure
of field-induced emission from a microscopic point is magnified

onto a large concentric observing sphere.

Solar Wind Plasma

Recent observations in the Vela satellite program by the
Los Alamos group have yielded important new information about
the solar wind plasma. These satellites are in circular orbits

about the earth at a distance of 18 earth radii, and spend about



one third of each orbit outside the magnetosphere and magneto-
sheath. A hemispherical plate electrostatic analyser makes
detailed measurements of the incident charped particle flux.
Figure 7 shows a typical spectrum and angular distribution.

The large peak in the spectrum is the almost monoenersetic
stream of protons with energy of sliphtly less than 1 kev. The
small peak at the right is attributed to alpha particles having
the same streaming velocity as the protons and therefore twice
the energy per unit charge. The angular distribution shows that
the particles are coming not quite from the sun but rather from
a few degrees east of it. Since the peaks in Figure 7 have a
finite width it is clear that in addition to the streaming
energy of the plasma there exists a random energy, which is
often described in terms of a "temperature", whose value has
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ranged from about 5x10 K to a few times 10

K, with a normal
proton temperature of a few times 10% (Strong et al.l966).

A complete measurement of flux as a function of energy and angle
is performed in about four minutes, and a typical result is
presented in Figure 8. Contours of observed particle flux are
shown as a function of two velocities; the abscissa is the
radial velocity V, from the sun and the ordinate is a velocity
perpendicular to both V, and to the spacecraft spin axis, which
is tipped by 55° to the ecliptic. The arrow shows the direction
of the interplanetary magnetic field simultaneously measured

on the near-by IMP-3 satellite.

The contours in Figure 8 depart from isotropy in two ways.
First, the temperature parallel to the field is considerably
larger than the transverse temperature, the ratio being about
3 in Figure 8, which is a typical value. Second, the temperature
(9.ZXI0q oK) along the field in the direction away from the sun
is larger than in the field direction toward the sun (this is
observed to be true independent of whether the polarity of the
field lines is toward or away from the sun)., Thus the solar
wind protons are transporting heat away from the sun at a rate
which is estimated at about 10"5 ergs/cmz/sec. A similar heat
transport by electrons would be expected to be several orders

of magnitude larger.




The persistence of the alignment between the plasma
anisotropy direction and the field direction during a period

of six hours is shown in Figure 9., The abrupt change in
direction at 1600 UT probably represents the appearance of an
interplanetary filament of the sort discussed previously in
connection with the cosmic ray observations of McCracken and
Ness (1966). It is worth noting that during the passage of

this filament past the satellite there was no éignificant
change in any of the usual plasma parameters (mean velocity,
density, temperature and alpha/proton density ratio). Only the
orientation of the anisotropic temperature distribution and

the field direction changed during the passage of this filament
(Hundhausen et al., 1967b).

Solar Wind Azimuthal Velocity

The solar wind angular distribution in Figure 7 shows
that the solar wind was coming from a direction a few degrees
east of the sun. Individual observations show longitudinal
deviations from radial plasma flow over a range of about :100,
but the average longitudinal plasma velocity (in the direction
of corotation with the sun) is observed to be about 10 km/sec
(Strong et Ei:’1967)' This 1is consistent with the analysis by
Brandt (igg}a) of the orientation of ionized cometary tails.
Such values for the solar wind longitudinal plasma velocity at
1l A.U. suggest that corotation of the extended coronal plasma
(this must be clearly distinguished from the corotation of
magnetic patterns previously discussed in this paper) extends
to greater distances than had previously been considered. Dicke
(1964) has shown that the loss of angular momentum by the sun
to the solar wind can be computed on the basis of rigid corota-
tion out to a radius at which the Alfvén velocity based on the
radial component of the field is equal to the streaming velocity.
This is a formal statement; it does not mean that rigid corota-
tion actually exists to this distance. Dicke obtained a typical
value of 35 solar radii for this distance, which is consistent
with estimates by other authors (Pneuman, 1966; Weber and Davis,
19673 Modisette, 1967; Brandt, 1967b). Brandt (1966) has shown



that the angular momentum loss in the solar wind could be

important in the structure and evolution of the sun.

Summary

In summary, we now have a picture of the streaming solar
wind at 1 A.U. carrying with it much detailed information about
the solar structure. The interplanetary magnetic field is of
crucial importance even though its energy density is about
two orders of magnitude less than the streaming energy density
of the plasma. The interplanetary sector structure is evident
in the polarity patterns of the field. Thermal anisotropies in
the plasma are field aligned. Cosmic rays from localized regions
of the solar atmosphere are guided to 1 A.U. (and beyond) by
magnetic filaments, whose pattern corotates with the sun. The
plasma velocity at 1 A.U, has a small component in the direction
of corotation, leading to important consequences for the extent
of corotation near the sun, the loss of angular momentum, and

the structure and evolution of the sun.
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Longitudinal sector structure in the interplanetary
medium observed by IMP-1 in 1963-4 (Wilcox and Ness,
1965).

Solar wind plasma velocity and proton number density
observed by Mariner 2 in 1962; plotted on a calendar
of Bartels 27-day solar rotations to show recurrence

properties (Neugebauer and Snyder, 1966).

Evolution of the interplanetary sector structure from
1962 to 1966, overlayed on a 27-day calendar of geo-
magnetic activity figure C9. Light shading is field
away from sun, dark shading is toward, and cross-
hatching is occasional periods of mixed polarity
(Ness and Wilcox, 1967).

Recurrent streams of 1 Mev protons observed by J.A.
Simpson on IMP-1 tend to be contained within a single
sector of the structure shown in Figure 1. Three
27-day solar rotations are shown (Wilcox and Ness,
1965).

Onset characteristics of three flare effects in qua-
drants looking toward the sun and away for energy
range 7.5-45 Mev, observed on Pioneers 6 and 7
(McCracken, et al., 1967).

Comparison of direction of interplanetary magnetic
field and direction of arrival of maximum cosmic

ray flux (McCracken and Ness, 1966).

Typical Vela 3 spectrum (counts versus energy per
unit charge in a fixed direction) and the associlated
angular distribution (counts versus direction at a
fixed energy per unit charge). The direction away
from the sun is labeled 1800, and the peak is a few

degrees east of this (Hundhausen, et al., 1967a).



Figure 8

Figure 9

Typical Vela 3 contour map of proton velocity
distribution in the radial direction from the sun
(abscissa) and in a normal direction (ordinate),
The arrow is the field direction simultaneously
measured on the nearby IMP-3 satellite (Hundhausen
et al., 1967b).

The magnetic field direction measured on IMP-3 and
the direction of maximum plasma thermal anisotropy

measured on Vela 3 (Hundhausen et al., 1967b).
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